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Micro�uidics simulation using adaptive unstructured grids
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SUMMARY

A methodology for micro�uidics simulation is presented. The methodology solves the three-
dimensional incompressible Navier–Stokes equations with an adaptive unstructured Finite Element
method. A semi-implicit Fractional Step procedure is used for time integration. The entire method-
ology has been parallelized for shared-memory architectures via an algebraic domain decomposition.
Results from both veri�cation problems and prototypical applications are included. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation and background

The �eld of micro-electrical–mechanical systems (MEMS) is currently of widespread interest
in numerous technological areas. Many MEMS devices are based on, or otherwise incorporate,
some aspect of �uid dynamics [1]. Examples can be found in power technologies, medical im-
plants, narcotics and explosives detection, environmental monitoring devices, and autonomous
microvehicles. The role of MEMS devices in future engineering technologies is only expected
to increase. Clearly, the ability to reliably and accurately predict the associated �ow �elds
around such devices is an important asset. The purpose of this paper, therefore, is to present
an overall computational methodology which provides such a capability for incompressible
�ows. This methodology is then applied to realistic three-dimensional (3D) geometries to
demonstrate its e�ectiveness.
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Although incompressible micro�uidics does at �rst glance appear to be relatively free of
computational di�culties, the issue of grid resolution quickly arises. Due to the low Reynolds
numbers involved—generally 10−1 or less—boundary layer grids are not required. However,
most problems of practical interest contain a very large variation in feature size: the largest
feature may be hundreds or thousands of microns across, whereas the smallest feature may
be less than 10 �m across. Numerical experience has indicated that across any feature, 5–10
grid points are generally needed to allow proper development of velocity gradients. Therefore
the smallest edge will be on the order of 1 �m or less, while the largest edge will be on the
order of tens of microns.
A uniform grid size of 1�m or less is obviously quite excessive. Therefore, if the problem

is to be kept at a reasonable size, the numerical method must be able to accommodate large
variations in edge length. Furthermore, an adaptive method is preferred: although one could
generate an appropriate mesh a priori to the calculation, the use of mesh adaption allows for
a more precise and e�cient placement of additional mesh points.
The combination of mesh adaption and non-uniform mesh size leads quite naturally to

unstructured grid methods, and an adaptive unstructured Finite Element (FE) scheme forms the
basis of the methodology described in this work. To o�set the computational costs associated
with incompressible �ow solvers and unstructured grid methods, the entire procedure has been
parallelized for shared memory architectures. Further improvements in computational e�ciency
are achieved by integrating the viscous terms implicitly. Although this approach is hardly
revolutionary, the impact on micro�uidics is particularly dramatic due to the overwhelming
dominance of viscous e�ects.

1.2. Validity of continuum approximation

The incompressible Navier–Stokes equations are used as the governing model for the �ows
considered in this work. One advantage of this approach is that an equation of state is not
required. Therefore, the same mathematical model can be used for a wide range of both liquid
and gaseous �ows. An important question is whether or not the Navier–Stokes equations are
still valid for the problems under consideration.
For gases, this question is easily answered via the Knudsen number, de�ned as

Kn= ��=L, where �� is the mean free path of the �ow and L is the size of the smallest feature.
Generally, Kn=0:01 is accepted as the upper limit of the full continuum approximation, with
extension into the range 0:016Kn60:1 possible if modi�ed boundary conditions are used [2].
For air at standard temperature and pressure, ��≈ 6× 10−6 cm, which yields a lower limit on
the feature size of L≈ 6 �m.
For liquid �ows, a typical Leonnard–Jones �uid has a model potential of the form

U (r)= k
[(�
r

)12
−

(�
r

)6]
(1)

where r is the intermolecular distance, and k and � are constants. An in�nite system—and
hence bulk properties—can be successfully approximated with particle-based methods and
periodic boundary conditions if the size of the computational domain is on the order of 6� in
each direction [3]. For water, �≈ 3:5 �A and hence the computational domain must be ≈ 21 �A,
or 0:0021 �m, in each direction. A minimum feature size of 6 �m corresponds to ≈ 2800�,
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MICROFLUIDICS SIMULATION 941

which is equivalent to several hundred ‘computational boxes’ of size 6�. The continuum
approximation is clearly reasonable in this case.

1.3. Summary of paper

This paper builds on previous work [4] to include additional details of the numerical method,
the mesh adaption procedure, and more complex applications which better represent real
engineering-type problems. The emphasis of this work is not new methods but rather
improvements to and combinations of existing methods which facilitate accurate and e�cient
numerical simulation of the problems of interest.
The remainder is organized as follows. Spatial and temporal discretization are discussed in

Sections 2 and 3, respectively. Section 4 presents the mesh adaption procedure, and Section 5
discusses parallelization. A veri�cation problem is presented in Section 6, while Section 7
presents sample applications. Lastly, concluding remarks are given in Section 8.

2. SPATIAL DISCRETIZATION

2.1. General �nite element formulation

The FE approach used in this work is an edge-based Galerkin method. Edge-based approaches
date back to the early 1990s for compressible �ows [5–8], with more recent work exploring
edge-based schemes in the context of incompressible �ow solvers [9, 10]. The underlying
idea in all such approaches is to store geometric parameters at the edge level rather than
the element level. In 3D, this storage approach results in a substantial savings in indirect
addressing and hence overall computational cost [11]. Furthermore, the edge-based approach
forms a natural framework for upwind schemes on unstructured grids [11–13]. The edge-based
scheme presented here is very similar to those previously described but has the property that
it does not assume linear basis functions. The derivation is included below for completeness.
Given a generic �eld variable u(x) and a FE approximation �h of the continuous domain �,

the gradient of u(x) at the nodes of the mesh can be written in the familiar Galerkin form∫
�h

N �N�(∇u)� d�h=
∫
�h

N �∇N�u� d�h (2)

where � and � represent nodal indices and N� denotes the �nite element basis function
at node �. In the usual FE fashion, this expression has two implied summations: an outer
summation over all elements surrounding node �, and, for each such element, and inner
summation over the nodes � of the element. The equivalent matrix form is, with a lumped
mass approximation,

ML(∇u)�=G��u� (3)

The lumped mass approximation will be used throughout.
What is desired is an antisymmetric edge-based representation of the right-hand side (RHS)

of (2). As a �rst step in the procedure, the inner summation can be split into the terms �=�
and � �=�. With the summations written out explicitly (and no implied summation convention),
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the result is

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h =
∑
�h∈�

∫
�h

N �∇N�u� d�h

+(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h (4)

where �h ∈ � denotes the set of elements which surround node �, and, for each such element,
�∈�h denotes the set of nodes which form element �h.
The integral in the above expression can be split in half, with the second half integrated

by parts, to yield the following identity:∫
�h

N �∇N�u� d�h = 12
∫
�h

N �∇N�u� d�h + 12
∫
�h

N �∇N�u� d�h

=
1
2

∫
�h

N �∇N�u� d�h

−1
2

∫
�h

∇N�N�u� d�h + 12
∫
�h

N �N�u�n d�h

=
1
2

∫
�h

(N�∇N� − ∇N�N�)u� d�h + 12
∫
�h

N �N�u�n d�h (5)

For �=�, the �rst term is identically zero so that∫
�h

N �∇N�u� d�h= 12
∫
�h

N �N�u�n d�h (6)

Substitution of (5) and (6) into (4) gives

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h = 12(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

(N�∇N� − ∇N�N�)u� d�h

+
1
2
(1− ���) ∑

�h∈�

∑
�∈�h

∫
�h

N �N�u�n d�h

+
1
2

∑
�h∈�

∫
�h

N �N�u�n d�h (7)

The above expression contains one term for the interior of the domain and two additional
terms for the boundary. The interior term is antisymmetric in the elemental integral, but it is
not antisymmetric in the unknown. It can be made antisymmetric in the unknown if the term

(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h (8)
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is added and subtracted from the RHS, with (5) applied to the additive part. After minor
rearrangement of terms, the result is

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h = 12(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

(N�∇N� − ∇N�N�)u�� d�h

+
1
2
(1− ���) ∑

�h∈�

∑
�∈�h

∫
�h

N �N�u��n d�h

+
1
2

∑
�h∈�

∫
�h

N �N�u�n d�h

−(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h (9)

where u��= u� + u�.
While the �rst term in (9) is now antisymmetric, a new domain term has been introduced

which is not antisymmetric. However, since the basis functions must be able to represent a
constant �eld, they must satisfy∑

�∈�h
∇N�=0=⇒ (1− ���) ∑

�∈�h
∇N�= − ∇N� (10)

With this relationship and (6), the last term in (9) can be rewritten as

(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h =− ∑
�h∈�

∫
�h

N �∇N�u� d�h

=
1
2

∑
�h∈�

∫
�h

N �N�u�n d�h (11)

Expression (9) therefore becomes

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h = 12(1− ���) ∑
�h∈�

∑
�∈�h

∫
�h

(N�∇N� − ∇N�N�)u�� d�h

+
1
2
(1− ���) ∑

�h∈�

∑
�∈�h

∫
�h

N �N�u��n d�h

+
∑
�h∈�

∫
�h

N �N�u�n d�h (12)

This �nal form contains a single domain term which is antisymmetric—and hence naturally
conservative—upon interchange of � and �.
The dual summations in the above expression consists of an outer sum over all elements

surrounding node �, and, for each such element, an inner sum for all points � �= �. This dual
summation can be reinterpreted as an outer sum over all pairs of points (i.e. edges) for which
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� is part of the pair, and, for each such pair, an inner sum over elements which contain the
pair. Mathematically, this reinterpretation implies that

(1− ���) ∑
�h∈�

∑
�∈�h

[· · ·]≡ ∑
��∈�

∑
�h∈��

[· · ·] (13)

where ��∈ � denotes the set of edges which surround node �, and, for each such edge,
�h ∈ �� denotes the elements which contain the edge. That the two forms of summation are
equivalent can be seen from direct inspection.
This reinterpretation, along with the observation that the integrand does not depend on the

unknowns u, allows (12) to be rewritten as

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h =
∑
��∈�

[
1
2

∑
�h∈��

∫
�h

(
N�∇N� − ∇N�N�) d�h

]
u��

+
∑
��∈�

[
1
2

∑
�h∈��

∫
�h

N �N�n d�h

]
u��

+
∑
��∈�

[∑
�h

∈ ��
∫
�h

N �N�n d�h

]
u� (14)

The following vector quantities can be de�ned to simplify the notation:

D�� =
1
2

∑
�h∈��

∫
�h

(N�∇N� − ∇N�N�) d�h (15)

B�� =
1
2

∑
�h∈��

∫
�h

N �N�n d�h; B�=
∑
�h∈�

∫
�h

N �N�n d�h (16)

With these de�nitions, (14) becomes

∑
�h∈�

∑
�∈�h

∫
�h

N �∇N�u� d�h=
∑
��∈�

D��u�� +
∑
��∈�

B��u�� + B�u� (17)

The equivalent matrix form with implied summations is

G��u�=D��u�� + B��u�� + B�u� (18)

Note that the last two terms apply only to edges and points, respectively, on the boundary
of the domain, while the �rst term applies to all edges in the domain. Additionally, no
assumptions about the dimensionality or the order of the elements have been made.
Lastly, note that for a constant �eld,

G��u�=0=⇒ 2
∑
��∈�

D�� + 2
∑
��∈�

B�� + B�=0 ∀� (19)

This relation constitutes the geometric conservation condition for any node � in the domain.
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Notation (18) will be implied wherever the gradient operator is used. Similar expressions
can be written for the divergence, curl, and tensor product of a vector �eld variable u(x):

G�� · u� =D�� · u�� + B�� · u�� + B� · u� (20)

G�� × u� =D�� × u�� + B�� × u�� + B� × u� (21)

G�� ⊗ u� =D�� ⊗ u�� + B�� ⊗ u�� + B� ⊗ u� (22)

The Laplacian operator can be interpreted as a natural edge-based quantity. With a similar
Galerkin procedure and the assumption of linear elements, the Laplacian of u(x) at the nodes
of the mesh is written as (with no implied summation)

ML(∇2u)�=L��u�=C�u� +
∑
��∈�

C��u� (23)

with

C��= − ∑
�h∈��

∫
�h

∇N� · ∇N� d�h: C�= − ∑
��∈�

C�� (24)

where the last step follows from the requirement to represent a constant �eld.
In a general sense, expressions (17) and (23) represent generic Galerkin forms of the

discrete gradient and Laplacian operators, respectively, and therefore are used to obtain discrete
weak solutions to the speci�c partial di�erential equations of interest, i.e. the Navier–Stokes
equations. Note that for both sets of operators, the �nite element integrals are still performed
at the element level; the only di�erence in the edge-based approach is the way in which
the results of those integrations are stored. The number of �nite element integrals performed
is exactly the same, and hence no additional computational cost is incurred other than the
assembly of the element-based integrals at the edge-based level. This additional cost is more
than o�set, however, by the reduction in indirect addressing costs.

2.2. Navier–Stokes equations

The governing equations for the �ows considered in this work are the incompressible Navier–
Stokes equations written in di�erential �ux-conservative form

∇ · v=0 (25)

�
@v
@t
+∇ · F +∇p− �∇2v=0 (26)

where v is the velocity vector, � is the density, � the viscosity, p the pressure, and F =�v⊗v.
For simplicity, only the homogeneous case with constant � is considered.
Discretization of the Navier–Stokes equations via a weak Galerkin procedure leads to∫

�h

N �∇N� · v� d�h=0 (27)
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�
∫
�h

N �N�	tv� d�h +
∫
�h

N �∇N� · F� d�h

+
∫
�h

N �∇N�p� d�h + �
∫
�h

∇N� · ∇N�v� d�h=0 (28)

where 	t is the discrete time derivative. The corresponding matrix form is, in the notation
of the previous section,

G�� · v�=0 (29)

�ML	t v� +G
�� · F� +G��p� − �L��v�=0 (30)

2.3. Convective stabilization

A Roe-type scheme is used to stabilize the convective �uxes. Speci�cally, the stabilized
convective �uxes on an edge are written as

F��=F� + F� − D̃�� ⊗ |v��|
[
v� − v� + l

2
· (∇v� +∇v�)

]
(31)

where D̃
��
is the unit vector along D�� and v��= D̃

�� · (v�+ v�)=2. The scheme is fourth-order
if the gradient terms are included, and second order if they are omitted.

3. TEMPORAL DISCRETIZATION

3.1. Fractional step scheme

The basic method for temporal discretization of the system of Equations (29)–(30) is a
semi-implicit fractional step (FS) scheme, with stabilization terms of the form developed by
Codina [14]. This recent work explored stabilized FS schemes in the context of a 2D FE for-
mulation. A similar stabilization term was developed for the momentum equations. The overall
technique was element-based, although alternative implementations have been examined [15].
Following the usual FS approach, the momentum equation is split through the introduction

of an intermediate velocity variable ṽ. The splitting used in this work is the semi-implicit
form

�
ML

�t
(ṽ n+1 − vn) +Gpn +G · Fn − �Lṽn+�=0 (32)

�
ML

�t
(vn+1 − ṽ n+1) +G(pn+1 − pn)=0 (33)

where nodal superscripts have been dropped for clarity of presentation and �t is the time step.
The implicitness parameter for the viscous term is �, with

ṽ n+�= �ṽn+1 + (1− �)vn (34)
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Application of the divergence operator to (33) yields the Poisson-pressure equation, which is
solved as an intermediate step

�tL(pn+1 − pn)− �G · ṽ n+1 =0 (35)

A diagonally preconditioned conjugate gradient method [16] is used to solve the linear sym-
metric systems (32) and (35).
The time step at a point � is taken to be

�t�=CnM�
L

[ ∑
��∈�

|D��|max(|v��|; v∞)
]−1

(36)

where Cn is the Courant number and v∞ is some non-zero reference velocity (typically the
freestream value) to prevent singularities at stagnation regions. No viscous terms are used in
the time step calculation, which implies that �¿0:5 for stability.

3.2. Pressure stabilization

Since equal-order basis functions for the pressure and velocity spaces are used, the LBB
condition is not satis�ed and hence the Poisson-pressure equation (35) will be unstable. This
equation can be stabilized via the approach in Reference [14]. The stabilized equation takes
the form

�tL(pn+1 − pn) + 	(Lpn+1 −G ·M−1
L Gpn)− �G · ṽ n+1 =0 (37)

where 	 is a point-wise parameter de�ned as

	=
h2

4
+ 2h|v| (38)

with h the average edge length at the point in question. In this work the de�nition of 	 is
modi�ed to

	=
h

2max(|v|; v∞) (39)

This modi�cation was motivated by the fact that 	 is directly analogous to the time step, and
the time step de�nition (36) does not include viscous terms.
The removal of viscous terms from 	 and �t has been found to signi�cantly improve the

stability of the Poisson-pressure equation in problems where the variation in edge size is large
(e.g. a factor of 10 or more). This behaviour is not surprising given that viscous contributions
to 	 and �t vary with h2, whereas the convective contributions vary linearly. The stability of
the scheme when used with local time stepping also improves when the viscous contributions
are omitted (the FS formulation assumes a constant time step). These two observations are
based entirely on numerical experience; no formal analysis of the situation has been performed.
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4. MESH ADAPTION

4.1. General considerations

The mesh adaption procedure in this work consists of an h-re�nement scheme [17–21] for
tetrahedral meshes. The basic elements of any h-re�nement scheme are an error indicator and
a set of adaption rules: the error indicator speci�es where the mesh should be modi�ed, and
the adaption rules specify how the mesh should be modi�ed. In addition, a suite of algorithms
are needed to ensure that elements are re�ned and coarsened in accordance to the adaption
rules, to add and remove elements from the mesh, and to maintain the element hierarchy
through appropriate data structures. Performance also is an issue for large-scale simulations.

4.2. Error detection

Of interest for this work are error indicators based on approximation theory, which dic-
tates that for a pth order approximation, the approximation error will be proportional to the
(p + 1)-th derivatives of the indicator variable in question. Therefore, for linear elements,
the error is proportional to second-order derivatives times h2. Several error indicators have
been successfully built on second-order derivatives, or, in more general terms, the Hessian of
the indicator variable [22–24]. The speci�c error indicator used in this work is a local 1D
Hessian on an edge, normalized by the L∞ norm

���=
|∇u� · l− ∇u� · l|

‖∇u� · l− ∇u� · l‖∞
(40)

where u is the indicator variable.
The fundamental adaption operation is to split edges with a ‘high enough’ error into two

equal-length child edges. When the error on the child edges is ‘low enough’, they are merged
into the original parent edge. Since the error is proportional to h2, the error on an edge will
decrease by a factor of four if the edge length is halved, and the error on an edge will
increase by a factor of four if the edge length is doubled. Therefore, following the approach
of Aftosmis and Berger [25], an edge is re�ned if its error is greater than four times the mean
value, and an edge is dere�ned if its error is less than one fourth the mean value

���¿ 4��=⇒ re�ne (41)

���6 1
4 ��=⇒ dere�ne (42)

where �� is the mean error value.
Quite obviously, the �ows considered in this work do not contain sharp moving features

such as shock waves or even vortices. Therefore, the goal in the adaption procedure is not
feature tracking per se, but rather equidistribution of error and alleviation of preprocessing
requirements. The above adaption criterion re�ects this approach.
If only a single indicator variable is desired, the normalization in (40) is not strictly neces-

sary. However, since the normalization yields an error indicator which is both dimensionless
and bounded on [0; 1], the normalized form facilitates comparison between the errors com-
puted with di�erent indicator variables. In the case of N indicator variables, the �nal error
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assigned to an edge is the maximum of all computed values for that edge, i.e.

���= ‖���i ‖∞; i=1; N (43)

Note that both the error indicator and the adaption criterion are free of tunable parameters.

4.3. Adaption cases

In this work, the allowable re�nement cases are the standard subdivisions of a tetrahedron
into two, four, or eight child elements. These are referred to as the 1: 2; 1: 4, and 1: 8 cases,
respectively. Subdivision of 1: 2 and 1: 4 children is not allowed; instead, the parent element
is fully re�ned into eight children. These cases are referred to as the 2: 8 and 4: 8 cases. The
resultant children are permitted to re�ne further in subsequent adaption passes. The interme-
diate case 2: 4 has been omitted for simplicity. The inverse of these cases form the allowable
dere�nement cases: 2: 1; 4: 1; 8: 1; 8: 2, and 8: 4. For dere�nement the 4: 2 case also is included.
No restriction is made on the order in which dere�nements can occur, e.g. a fully re�ned
element is allowed to dere�ne into four, two, or one element as needed.
Re�nement of an edge is limited to a maximum number of levels. One or two levels of

re�nement is generally adequate for the class of problems under consideration. Edges in the
original mesh are not allowed to coarsen. An element is �agged for re�nement if any of its
edges are �agged for re�nement. For an element to be �agged for dere�nement, all of its
edges, as well as all edges of its sibling elements, must be �agged for dere�nement.

4.4. Implementation

The basis of the adaption data structures is a ‘master’ list of elements. This list contains
the nodes of all elements, including re�ned elements. A separate list contains the ‘active’
elements. The active list contains all unre�ned elements and therefore represents the current
mesh at any stage in the simulation.
For each master element, the following information is stored:

• active element number,
• re�nement case,
• number of children,
• child elements,
• re�nement level,
• child number,
• parent element.

Values which do not apply for a particular element are set to zero (for example, an element
in the original mesh has no child number or parent element). For the active elements, an
additional pointer-like array stores the corresponding master element numbers.
The �ow solver proper (along with procedures for derived data structures, I=O, etc.) only

operates on the active list of elements; the master list of elements and all other adaption arrays
are contained in a separate module which is accessible only by the adaption subroutines.
To reduce memory usage, no information for a re�ned element is retained other than the
adaption data structures.
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4.5. Performance considerations

After each mesh change, the solution must be interpolated to newly created points with the
FE basis functions; the mesh must be renumbered; derived data structures must be rebuilt; and
FE integrals must be recalculated. The cost of the mesh adaption is less than the combined
cost of these secondary operations. This behaviour is not surprising, since the bulk of the
operations in the adaption procedures are integer. Furthermore, several of the loops in the
adaption procedure operate on reduced subsets of data rather than the entire mesh. The total
cost of the mesh adaption and the secondary operations is generally an order of magnitude
less than the cost of a single incompressible time step. Therefore the mesh adaption procedure
incurs only a minor increase in computational costs. Dynamic memory is used for all adaption
arrays (as well as all �ow solver arrays), and all arrays are reallocated after a mesh adaption
to minimize requested but unused memory.

5. PARALLELIZATION

Despite rapid advances in computer technology over the last decade, the simulation of 3D
incompressible �ows on large unstructured grids remains a computationally challenging task.
Therefore, a high level of parallel e�ciency is needed to study many problems of practical
engineering interest.
In this work, parallelization of the numerical methodology is performed with a shared-

memory paradigm implemented through the OpenMP API. Although many operations can be
parallelized as-is with the OpenMP directives, memory performance will su�er severely if
multiple processors attempt to simultaneously update neighbouring or identical pieces of data.
The general approach used in this work to overcome the memory contention problem is a

domain decomposition of the mesh at the algebraic level. For the elements, the subdomains
are equivalent to colouring groups. Consider a mesh G=(V;E), with points V and ele-
ments E, and denote by Vij=Ei ∩Ej the subset of points shared between elements Ei and Ej.
A colouring group is de�ned as a subset G of G for which

Vij= ∅ ∀Ei; Ej ∈G (44)

Since no two members of G share a point, they also cannot share a face or an edge. This
property allows the mesh adaption procedure to be parallelized [26, 27], as well as the sec-
ondary operations related to derived data structures [28] and construction of the �nite element
matrices.
The colouring groups themselves can be generated in parallel if the elements are divided

evenly among the processors and a separate set of colouring groups is constructed on each
processor. Numerical experiments indicate that the number of colours typically increases by
10–20% with each doubling of the number of processors.
For the evaluation of the edge-based gradient and Laplacian operators, which constitutes

the overwhelming majority of operations in any simulation, a more precise decomposition is
needed to achieve a high level of parallel e�ciency. Such approaches for unstructured grids
on shared memory architectures were explored in Reference [29], and the technique used in
this work is very similar. The basic idea is to �rst collect the edges into microgroups of length
Nv, where Nv is a free (i.e. user-settable) parameter. The microgroups are then collected into
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Figure 1. Parallel speed-up as a function of the number of processors.

macrogroups on each processor, and the processors operate on their respective macrogroups
in parallel.
To create the micro- and macrogroups, the �rst step is to renumber the points via a

bandwidth-minimization technique (usually a simple advancing wavefront-type procedure),
and then sort the edges according to the minimum point number. The edges are sorted a
second time according to the maximum point number. With this renumbering, the edges and
points will be ordered such that the range of point data indirectly accessed by the edges will
vary smoothly as the range of edge data is traversed [30].
Once the renumbering is completed, the microgroups are formed from sequential lists

of edges, and the macrogroups—two per processor—are formed from sequential lists of
microgroups. If Ncpu is the number of processors and Nedge is the number of edges, the
number of edges in each macrogroup will be approximately Nedge=2Ncpu. The macrogroups are
assigned sequentially to each processor.
At the inter-processor boundaries between macrogroups, microgroups on di�erent proces-

sors will contain overlapping point ranges and the possibility of memory contention exists.
Therefore parallelization is performed via a two-pass approach: each processor operates on its
�rst macrogroup in the �rst pass, and its second in the second pass. Within each parallel loop,
the range of edges under consideration by any given processor will be separated in memory
by ≈Nedge=2Ncpu from the range of edges under consideration by any other processor. Since
the edges are renumbered according to their minimum and maximum point number, the range
of point data simultaneously accessed by any two processors will not overlap (without the
renumbering this would not be the case). The overall approach generally leads to a near
perfect distribution of edges among processors, and hence a uniform workload.
Note that the edges within a microgroup do contain overlapping ranges of point data.

Therefore, this technique will not perform optimally on a true vector machine. In that case,
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the microgroups must not overlap. A non-overlapping ordering scheme suitable for vector
machines has been implemented, and the performance of the two approaches was compared
for equal values of Nv. For the computer architectures under consideration, speci�cally the SGI
Origin class of servers and similar cache-based machines, the sequential ordering outperformed
the non-overlapping ordering by 10–20% due to reduced cache misses within microgroups.
The performance of the sequential ordering was found to be only mildly dependent on Nv,
with 1026Nv6103 generally giving the best results.
The parallel performance of the solver on a test case of 2:5× 106 elements is shown in

Figure 1. The timing data were obtained on an SGI Origin 2000 system, with a maximum of
20R12000 processors. Ideal performance is indicated by the solid line. The results indicate
that a parallel e�ciency of ≈ 90% is maintained out to ≈ 105 elements per processor.

6. VERIFICATION STUDY

The �ow through a circular pipe was examined as a veri�cation study. The analytical solution
in cylindrical coordinates is of the form [31]

u(r)= − @p
@z
a2 − r2
4�

(45)

where a is the pipe radius. The initial conditions used in the simulation consisted of a uniform
pressure p0 and a radial velocity given by

u(r)= u0
a2 − r2
a2

(46)

where u0 = u(0) is the maximum velocity. For the boundary conditions, the in�ow velocity
pro�le and the out�ow pressure were �xed. Since the pressure gradient is constant, the in�ow
pressure is given by

p(L)=p0 − L @p
@z
=p0 + L

4�u0
a2

(47)

where L is the length of the pipe. The physical parameters were chosen such that the Reynolds
number was 10−2, which is consistent with the class of problems under consideration.
The geometry was chosen such that the pipe had length equal to 20 times its radius, and the

solution was calculated on a series of four meshes. The coarsest mesh contained approximately
�ve elements across the diameter of the pipe, and the average edge length was successively
halved in each �ner mesh. The meshes were generated independently and were not nested.
The simulation was run to convergence on each mesh with the second-order form of the

stabilized �ux in (31). The velocity pro�le on a vertical line through the centre of the pipe was
extracted and compared to the analytical solution. Table I summarizes the number of points,
number of elements, the L1 error in the velocity �eld, and the L1 error in the computed in�ow
pressure for each calculation. The error values decrease by approximately a factor of four with
each mesh re�nement, which indicates the expected second-order accuracy.
The computed velocity pro�les, along with the analytical velocity pro�le, are shown in

Figure 2. Also shown are the normalized convergence histories for the three �nest meshes.
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Table I. Summary of mesh parameters and errors for validation study.

Mesh Points Elements ‖�u‖=u0 ‖�p‖=p0
1 2194 9046 5.561 1:241× 10−3

2 13885 70067 1.378 0:284× 10−3

3 100565 549033 0.354 0:075× 10−3

4 777982 4416474 0.083 0:016× 10−3
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Figure 2. Velocity pro�les (left) and convergence histories (right) for veri�cation problem.

The convergence histories indicate that the convergence rate is largely independent of mesh
size.

7. SAMPLE APPLICATIONS

7.1. Microsensor

The �rst sample problem is an air �ow past a prototypical microsensor platform. The device
is mounted in a square tube. Figure 3 shows a wireframe of the geometry and the initial sur-
face mesh as viewed from the in�ow plane. The initial mesh contains approximately 2:1× 106
tetrahedron. The device has a minimum thickness of 8�m. The boundary conditions consisted
of a �xed in�ow velocity pro�le (biparabolic) with a peak of 10 cm=s; zero velocity on all
solid surfaces; and �xed out�ow pressure. The Reynolds number based on the minimum thick-
ness is 0:05. Mesh adaption was performed every 100 time steps with the velocity magnitude
used as the indicator variable. Adaption was restricted to one level of re�nement.
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Figure 3. Geometry de�nition (left) and surface mesh (right) for microsensor.

Figure 4. Steady-state pressure (left) and velocity (right) distributions.

Figure 4 shows the steady-state solution. Shown are the pressure contours on the solid sur-
faces and the velocity contours on a vertical cut-plane through the centre of the computational
domain (the shaded region indicates the cut-plane). In Figure 5 are two images of the �nal
adapted surface mesh. On the left is the same view as in Figure 3; note that most of the
re�nement occurs on the sidewalls. On the right is a close-up of the adapted mesh near one
of the support arms. The �nal adapted mesh contained approximately 3:4× 106 tetrahedron.
No mesh adaption was needed after the third adaption pass.
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Figure 5. Adapted surface mesh viewed from the in�ow plane (left) and near a support arm (right).

7.2. Micro�lter

The second sample problem is a water �ow through a cylindrical micro�lter. Figure 6 shows
the geometry de�nition and the initial surface mesh near the membrane. The �lter membrane
is 5 �m thick, the holes have a diameter of 10 �m, and the membrane diameter is 500 �m.
The �ow-through area is approximately 17% of the total membrane area. Due to symmetry,
only one fourth of the geometry is actually simulated. The initial volume mesh contained
approximately 5:6× 105 tetrahedron. The boundary conditions are similar to those for the
microsensor, with the exception of a symmetry condition on the planar side walls. The peak
in�ow velocity was 100 �m=s. The Reynolds number based on the membrane thickness was
5× 10−4. Mesh adaption was performed on the �rst time step and every 100 subsequent time
steps. Two levels of re�nement were allowed for this case, with velocity magnitude as the
indicator variable.
The results for this problem are shown in Figures 7 and 8. Figure 7 shows the steady-

state velocity contours on the symmetry walls (left) and on a vertical cut-plane (right);
Figure 8 shows �nal adapted surface mesh from both external and internal viewpoints.
The �nal volume mesh contained approximately 7:0× 106 tetrahedron and had a variation
in edge size of approximately 103. The second level of re�nement was needed only in the
membrane holes and the immediate surrounding area.

7.3. Particulate cluster

The �nal sample problem consists of a generic liquid �ow past a cluster of spherical particles
at a Reynolds number of 10−1. The cluster is a�xed to the bottom and side walls of the
channel. Each particle has a diameter of ≈ 10 �m, and the cluster has a maximum length of
≈ 100 �m. The channel is approximately 150 �m square. The geometry de�nition and surface
mesh are shown in Figure 9. The volume mesh contained approximately 8:3× 106 tetrahedron.
In this case, the discrete surface faces which comprised the particle cluster resulted in a

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:939–960



956 J. WALTZ

Figure 6. Geometry de�nition (left) and surface mesh (right) for micro�lter.

Figure 7. Steady-state velocity contours on symmetry walls (left) and vertical cut-plane (right).

volume mesh of su�cient resolution. Therefore, no mesh adaption was needed. The boundary
conditions for this case were similar to the microsensor problem.
Figure 10 shows the steady-state velocity contours on horizontal cut-planes. Figure 11 shows

the steady-state contours on vertical cut-planes. Given the complex nature of the particulate
geometry, the �ow patterns are surprisingly simple. This relative simplicity is clearly due to
the overwhelmingly viscous nature of the �ow.
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Figure 8. Final adapted mesh on symmetry wall (left) and membrane surface (right).

Figure 9. Geometry de�nition (left) and surface mesh (right) for particulate cluster.

8. CONCLUSIONS

A methodology for the simulation of micro�uidics problems has been presented. The method-
ology is based on the incompressible Navier–Stokes equations and therefore is suitable for
both gaseous and liquid �ows. The governing equations are solved by combining an adaptive
unstructured Finite Element method for spatial discretization with a FS scheme for tempo-
ral discretization. Parallelization is achieved for shared memory architectures via an algebraic
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Figure 10. Steady-state velocity contours on horizontal cut-planes.

Figure 11. Steady-state velocity contours on vertical cut-planes.

domain decomposition. The ability of the methodology to simulate �ows in microscale devices
has been demonstrated through a number of sample applications.
What remains for future work are two primary issues. The �rst of these is computational

e�ciency. The primary bottleneck in the numerical methodology is the Poisson-pressure equa-
tion: upwards of 90% of the CPU time might be spent in its solution. Better preconditioners
[32–34] can potentially o�er signi�cant gains in performance for relatively modest increases
in complexity. Unstructured multigrid methods represent another possibility, and have been
explored for the solution of the Poisson-pressure equation on dynamic unstructured grids
[35, 36]. While these studies were useful from a proof-of-concept perspective, they nonethe-
less suggest that perhaps a better approach would be to apply multigrid to the entire system
of equations, as is typically done with compressible �ow solvers [37]. Lastly, a fully implicit
time integration could substantially decrease the number of time steps required for many simu-
lations. A preliminary version of a fully implicit solver has been implemented, but the overall
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bene�t of such a scheme compared to the semi-implicit scheme for steady state problems
is still unclear: the time step for the semi-implicit scheme is already a factor of 103 higher
than that for a fully explicit scheme. There is no question that a fully implicit scheme will
facilitate the simulation of unsteady problems.
A second area for future work is the incorporation of additional �ow physics. Numerous

MEMS-related problems are multi-disciplinary in nature, and the utility of any simulation
which does not involve all of the related physical phenomena is obviously limited. Examples
might include surface physics [38], reacting �ows [39], or molecular phenomena [3]. For
compressible micro�ows, the continuum approximation may begin to break down. In these
cases a coupling to Direct Simulation Monte Carlo methods [40, 41] is needed to ensure
validity of the underlying equations throughout the computational domain. Although some
work has been done in all of these areas, numerous challenges, from algorithmic issues to
boundary conditions to the simple question of computational feasibility, remain.
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